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ABSTRACT
We propose a segmentation-based dense stereo algorithm
within an energy minimization framework. The cost func-
tion includes a new consistency term to take into account
an initial quasi-dense disparity map and handles occlusions
explicitly. Based on quasi-dense matching and color seg-
mentation, optimization is performed efficiently by assum-
ing a constant disparity for each region. The assumption
is made robust by over-segmentation and a dynamic region
splitting method done by graph cut. The efficiency and ac-
curacy of the algorithm are demonstrated on standard stereo
data. Experiment results show that the algorithm compares
favorably with other state-of-the-art stereo algorithms.

1. INTRODUCTION

Two main problems in dense stereo are lack of texture and
occlusion in the image. We propose a segmentation-based
algorithm that handles the two problems appropriately within
an energy minimization framework. Experiment results show
that the algorithm compares favorably with other state-of-
the-art stereo algorithms. It has the following features: (1)
Color segmentation is used to capture disparity discontinu-
ities and a constant disparity is assumed for each region.
The assumption leads to an efficient implementation and
is robust due to over-segmentation and a dynamic region
splitting step. (2) A quasi dense matching algorithm is in-
tegrated as pre-processing step. Based on the quasi dense
correspondences, the dense disparity map is initialized ef-
ficiently, and a new consistency term is introduced in the
cost function to make the matching more reliable in texture-
less areas. (3) The optimization is performed using a fast
greedy method generalized from the method in [16]. The
algorithm handles occlusion explicitly while only computes
one disparity(depth) map from two or more input images.

Related Work Segmentation-based stereo matching has
received a lot of attention recently [16, 6, 2, 12]. It is ad-
vantageous in that the disparity smoothness within the re-
gion and discontinuities on the region boundary can be ef-
ficiently assumed. However, it suffers from the difficulty

of appropriate segmentation and causes problems when dis-
parity discontinuities do not coincide with region bound-
ary. This can be solved using iterative segmentation[2, 12]
or simply ignored[16, 6]. Our solution is a trade-off. We
show that using over-segmentation and an efficient dynamic
region splitting method can almost capture all the dispar-
ity discontinuities. Our approach is closer to [16, 6] but
differs in the initialization step, smoothness handling and
optimization method. Our approach is quite different from
[2, 12] which perform the segmentation and fit the motion
parameters of each region iteratively, therefore, more com-
putationally expensive.

Recently, noticeable progress has been made in stereo
by formulating the problem within an energy minimization
framework and solving the minimization by graph cut algo-
rithm [13, 4, 8, 9, 3]. Our algorithm differs from above ap-
proaches in two aspects: (1) The energy function includes a
new consistency term and handles occlusion explicitly while
only computes one disparity map; (2) The optimization is
done by a simple and efficient greedy algorithm. Graph cut
is used in the dynamic region splitting.

Organization The paper is organized as follows. Sec-
tion 2 formulates and discusses our approach. Section 3
gives the algorithms and implementation details. Experi-
ment results are reported in Section 4. Section 5 concludes
this paper.

2. FORMULATION AND APPROACH

Preliminaries Our approach will be formulated using two
horizontally rectified images. The generalization to multi-
ple input images is straightforward.

Let I0 denote the reference(left) image andI1 be the
second(right) image. The algorithm computes a disparity
functiond overI0 such that every pixelp in I0 corresponds
to pixel p + dp in I1, wheredp is the disparity ofp, a hor-
izontal displacement vector. Figure 1(a) and (b) show the
reference image and ground truth disparity map on Tsukuba
data, respectively.

To handle occlusion, a visibility functionvisible(p, d)



is defined. It returnstrue if p is visible when warpingI0

to the viewpoint ofI1 according to the disparity functiond,
i.e.,visible(p, d) = false, if ∃q, q+dq = p+dp∧dq > dp,
otherwisevisible(p, d) = true.

A robust quasi-dense matching algorithm [11] is inte-
grated as pre-processing. It computes the correspondence
information for only those sufficiently textured areas. Match-
ing is propagated from the most reliably matched pixels to
their neighbors. Propagation is stopped when texture cue is
not sufficient. More details can be found in [11]. LetQ be
the set of correspondences computed,Q = {(p, q) | p ∈
I0, q ∈ I1}. One may think thatQ partially defines the dis-
parity functiond. Figure 1(c) shows a quasi dense disparity
map. Note thatQ satisfies the uniqueness constraint, i.e.,
each pixel can be involved inQ at most once.

Definition of a new cost functionPrevious algorithms
[13, 4, 8, 9, 2, 12] formulate the dense stereo matching as
an energy minimization problem where the energy func-
tion typically includes the following two terms:Edata(d)
and Esmoothness(d). The data term,Edata(d), measures
how consistent the disparity functiond agrees with the in-
put images. The smoothness term,Esmoothness, encodes
the smoothness assumption imposed by the algorithm.

Our cost function is defined with the following three
terms

E(d) = Edata(d) + Esmoothness(d) + Econsistency(d).
(1)

Our algorithm tries to compute a disparity functiond that
minimizes (1).

The first two terms play the similar role as mentioned
earlier. In addition, a new termEconsistency is introduced
to measure the agreement of the disparity functiond with
the pre-computed quasi dense correspondences.

The data termEdata differs from the previous ones in
that it handles occlusion explicitly,

Edata(d) =
∑

p

D(p, d),

whereD(p, d) is 0, if visible(p, d) = false, and can be
any other robust matching cost measure(SSD, SAD, nor-
malized correlation, etc.) otherwise. In the implementation,
we use the robust truncated absolute difference,D(p, d) =
min(0, |I0(p) − I1(p + dp)| − K), whereK is a positive
constant.

The smoothness termEsmooothness encourages smooth
disparities over the 4-connected neighborhood systemN =
{(p, q) | |px − qx|+ |py − qy| = 1},

Esmoothness(d) =
∑

(p,q)∈N
S(dp, dq),

whereS(dp, dq) is 0, if dp = dq, and returns a positive
penaltyλsmoothness otherwise.

The consistency term penalizes the disparities that are
inconsistent withQ,

Econsistency(d) =
∑

p

C(p, d),

whereC(p, d) returns a positive penaltyλconsistency if (i)
visible(p, d) = true, and (ii)∃p′, (p′, p+dp) ∈ Q∧p 6= p′.
Otherwise,C(p, d) is 0.

Segmentation-based representationWhile the above
formulation is completely independent, a segmentation-based
representation is favored due to the following considera-
tions:

• In practice, disparity discontinuities usually coincide
with intensity edges that can be readily captured by
color segmentation [5]. The disparity smoothness within
a region is assumed explicitly. Computational com-
plexity is therefore reduced significantly.

• The form of energy function (1) does not allow us-
ing the efficient graph cut algorithm[10] in the opti-
mization due to the occlusion handling. Instead, the
method in [16] is generalized and simplified. It han-
dles occlusion based on segmentation and computes
an approximate solution very fast.

Pixels in a regionR are assumed to have the same dis-
parity dR. Note here the same notationd is used, which
will not cause any ambiguity. Our algorithm actually as-
signs each region a disparity. The assumption enables very
efficient computation but is essentially only valid for fronto-
parallel surfaces. It causes problems when involving large
slanted surfaces. However, we claim that, by using over-
segmentation and taking a further dynamic region splitting,
the assumption becomes a good approximation in practice.
The region splitting is done by graph cut and will be de-
scribed in Section 3. Figure 1(d) and (e) show examples of
color segmentation and region splitting, respectively.

Although the smoothness constraint is imposed inside
each region, the smoothness term in (1) is still meaningful
since it regularizes the computation for small regions.

Discussions on the consistency termThis term is in-
troduced to exploit the fact that only textured pixels can
be matched reliably and they should assist or constrain the
matching process of other textureless pixels. This idea has
also been exploited in [17].

Combined with the segmentation representation, this term
makes a textureless regionR be matched more reliably. Even
when a few pixels inR can be pre-matched correctly and
appear inEconsistency, they tend to fixdR at its correct
value. Experiment results show that the consistency term
really helps in textureless and occluded areas.

The main problem is that there are outliers in the pre-
computed correspondences, caused by the so calledfore-
ground fatteningproblem and typically distributed near the



(a) (b) (c) (d) (e)

Fig. 1. Tsukuba data. (a)reference image. (b)ground truth disparity map. (c)disparity map partially defined by the quasi
dense correspondence. (d)color segmentation. (e)an example of dynamic region splitting. The green colored region in (d) is
split into several smaller regions in either red or green in (e). This clearly demonstrates that the splitting step helps to capture
disparity discontinuities further where the color segmentation fails.

surface boundary on the textureless background. That is the
reason of using condition (i) in functionC(p, d). Under this
condition, outliers in the occluded area will not take effect
since they should be invisible in case of a correct disparity
function.

3. ALGORITHM AND IMPLEMENTATION

In the pre-processing, the color segmentation [5] is applied
to I0 and quasi dense matching algorithm [11] is applied
to the image pair. Afterwards, the disparity functiond is
initialized based on the quasi dense correspondences and
then the cost function (1) is optimized by a greedy algorithm
to obtain the final disparity function. The initialization and
optimization steps are elaborated in the following.

3.1. Initialization

In this phase, the problem is to initialize the disparitydR

for each regionR. The method is straightforward based
on the pre-matched pixels. For each regionR, let dispR

1st

and dispR
2nd be the two disparities that receives the most

and second most votes from the pre-matched pixels inR.
Let pureness(R) be the ratio of difference in the number
of votes fordispR

1st, dispR
2nd and the total number of pre-

matched pixels inR. If pureness(R) is smaller than a pre-
defined threshold (0.8 in the implementation), the regionR
will be split dynamically. The pureness testing and split-
ting are performed iteratively until all regions are initial-
ized. A regionR becomes initialized when (i) there is no
pre-matched pixels inR, or (ii) R becomes smaller than a
pre-defined threshold or (iii)pureness(R) is larger than the
pre-defined threshold. In case (i)dR is assigned the smallest
possible disparity. In case (ii), (iii),dR is assigneddispR

1st.
Dynamic Region Splitting For computational consid-

eration, it is assumed that all pixels inR have only two dif-
ferent disparities:dispR

1st anddispR
2nd. The splitting is a

process of assigning each pixel one of the two disparities.
New regions consist of connected pixels with the same as-
signed disparity. Figure 1(e) shows one example.

The disparity assignment is a bi-labelling problem that
can be addressed as an energy minimization problem in MAP-
MRF framework and solved exactly via graph cut[7, 4]. The
implementation of graph cut in [3] is used, which is efficient
for vision applications. Refer to [4] for details.

3.2. Optimization

In this phase, the problem is to minimize the energy function
(1). We use a simple greedy algorithm that is similar toα-
expansion algorithm in [4, 8, 9].

For every possible disparityα and each regionR, dR is
changed toα and energy decreaseδE(d,R, α) = E(dR

α )−
E(d) is computed, wheredR

α is a disparity function by chang-
ing dR to α. If δE(d, R, α) < 0, R is recorded. After all
the regions have been tested, the disparities of all recorded
regions are changed toα. This process is performed over all
possible disparities iteratively and stops when the cost func-
tion can not be decreased anymore or the maximum number
of iterations has been reached.

The method is greedy and local in that it only checks
one region at a time and does not consider the interaction
of regions simultaneously, therefore it does not compute a
global solution. However, in practice, it computes a good
local solution, provided that the disparity functiond is ap-
propriately initialized.

Implementation The algorithm focuses on the compu-
tation of energy decreaseδE(d,R, α) for each(R, α) pair.
E(d) is computed only once for eachα. A straightforward
way is to first computeE(dR

α ) and thenδE(d,R, α), but this
is too expensive. A more efficient but equivalent method
in [16] is generalized and simply described as follows: an
imageI

′
1 is created by warpingI0 to the viewpoint ofI1

according to the current disparity functiond. This is done
only once for eachα. Each position inI

′
1 records the two

top-most pixels and relevant information such as the match-
ing cost and region label. Since only one region can have its
disparity changed at a time,I

′
1 records all the information

that are necessary to compute the visibility change and en-
ergy decrease.δE(d,R, α) consists of three terms,δEdata,



δEsmoothness andδEconsistency. δEdata andδEconsistency

can be efficiently computed based on the information stored
in I

′
1, whileδEsmoothness is computed in a brute-force way.

Refer to [16] for more details.
Time complexity of the optimization algorithm isO(nIDN),

wheren is the number of input images,I is the number of
iterations,D is the number of possible disparities andN is
the number of pixels in the reference image.

4. EXPERIMENTS

The algorithm is evaluated on the test bed proposed by Scharstein
and Szeliski[14, 1]. The evaluation measure is the percent-
age of wrong disparities differing from the true value more
than 1 pixel. This measure is calculated over three different
areas in the image, classified as untextured(untex), discon-
tinuous(disc) and the entire image(all). The ground truth
disparity map and the stereo data sets used in the experi-
ments are available on the web[1].

Comparison with graph cut algorithms The graph cut
algorithms in [4, 9] are independently implemented for com-
parison on the same platform, referred to as GC and GC-
MulCam, respectively. The disparity (depth) map of the
Tsukuba data using either two or five input images are shown
in Figure 2. Each disparity(depth) map is obtained using the
best parameters. Corresponding quality measures and run-
ning time are given in Table 1. One can verify the correct-
ness of our implementation, by either inspecting the dispar-
ity map or comparing the quality metrics with those of the
original implementation provided in Table 2.

Our algorithm slightly outperforms GCMulCam with 2
input images and GC with 5 input images, and achieves
comparable results in other cases. It performs particularly
well on the long thin lamp pole, which benefits from the oc-
clusion handling and color segmentation. It is seen that GC
achieves better result using two input images than using five
input images, perhaps due to the lack of occlusion handling.

The greedy optimization algorithm is faster than GC-
MulCam and comparable with GC. If the preprocessing time
(about 1 minute) is taken into account, our algorithm is
comparable with GCMulCam and slower than GC. Note
that GCMulCam computes the depth maps of multiple in-
put images simultaneously and its running time increases
at least linearly with the number of input images, since the
number of nodes in its graph construction increases linearly.

Results on other data setsThe algorithm is also com-
pared with other stereo algorithms. Results are given in Ta-
ble 2 and Figure 3.

For Tsukuba data, we obtain comparable results with
the best algorithms. For the other three data sets involved
in Table 2, Venus and Sawtooth data contain large slanted
surfaces, and Map data is too textured to make a success-
ful color segmentation. However, quite good results are still

#img algo all untex disc time(sec)
Ours 1.77 0.36 8.66 2.7(0.1)

2 GC 1.73 0.86 8.85 7.9
GCMulCam 2.16 1.27 11.27 18.5

Ours 1.36 0.61 7.92 10.3(0.3)
5 GC 2.86 2.52 15.80 8.2

GCMulCam 2.45 3.92 5.79 82.9

Table 1. The quality measures of graph cut algorithms are
obtained from our implementation. The left most column is
the number of input images. The right most column is the
running time of optimization step. For our algorithm, the
value in the brackets is the running time of initialization.

obtained that are slightly poorer than the best global algo-
rithms but better than most local algorithms[14, 1]. Note
that those occluded and textureless regions in Sawtooth and
Venus are matched correctly and no obvious foreground fat-
tening is observed.

The two rightmost columns of Figure 3 show the results
on other two data sets, Cones and Teddy, which are only
for qualitative evaluation. The disparity discontinuities are
successfully identified in most areas and most fine structures
are recovered. The black areas in the left of the disparity
maps are due to the large disparity range of the two data
sets(55 and 52 pixels, respectively).

Parameter SettingIn all the experiments, most param-
eters are fixed, including those in the pre-processing. How-
ever, since there are many different components involved
in the algorithm, three parameters are selected empirically,
namelyλsmoothness, λconsistency andλlocal. The first two
appears in the energy function and the last one is used as
the smoothness factor in the region splitting done by a lo-
cal graph cut. Results shown above are obtained using best
parameters.

An undesirable property is that the parameter selection
is sensitive to the extent of texture and color segmentation
result. This is the main limitation of the algorithm. For
example, smallλsmoothness is favorable for Tsukuba data
because of the moderate texture and good segmentation, but
largeλsmoothness is used for Map data, on the contrary. One
future work is to choose the parameters automatically ac-
cording to texture and segmentation information.

5. CONCLUSION

In this paper, a dense stereo algorithm is presented. It in-
tegrates several different components into an energy mini-
mization framework. Color segmentation is used to impose
smoothness constraint and capture the disparity disconti-
nuity. Quasi dense correspondences are used in initializa-
tion as well as in the energy function. The energy function
differs from others in that it handles occlusion explicitly



Tsukuba Sawtooth Venus Map
algo all untex disc all untex disc all untex disc all disc
Our algorithm 1.77 0.36 8.66 1.61 0.38 5.52 2.29 4.08 9.79 0.68 9.00

Layered[12] 1.58 1.06 8.82 0.34 0.00 3.35 1.52 2.96 2.62 0.37 5.24
Belief prop[15] 1.15 0.42 6.31 0.98 0.30 4.83 1.00 0.76 9.13 0.84 5.27
GCMulCam[9] 1.85 1.94 6.99 0.62 0.00 6.86 1.21 1.96 5.71 0.31 4.34
GC+occl[8] 1.27 0.43 6.90 0.36 0.00 3.65 2.79 5.39 2.54 1.79 10.08
GC[4] 1.86 1.00 9.35 0.42 0.14 3.76 1.69 2.30 5.40 2.39 9.35
Multi-cut[2] 8.08 6.53 25.33 0.61 0.46 4.60 0.53 0.31 8.06 0.26 3.27
Max flow[13] 2.98 2.00 15.10 3.47 3.00 14.19 2.16 2.24 21.73 3.13 15.98

Table 2. Comparison with other algorithms on four data sets. The evaluation is done on the web[1].

and includes a new consistency term. It is optimized ap-
proximately by a fast greedy algorithm based on segmenta-
tion. An additional region splitting step makes the algorithm
more robust. Experiment results show that the proposed al-
gorithm is comparable with best state-of-the-art methods,
both in accuracy and efficiency. The main limitation is that
several parameters need to be set empirically.
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Our algorithm GC GCMulCam

using two input images

using five input images

Fig. 2. Comparison with graph-cut algorithms. The three columns from left to right show the disparity maps computed by
our algorithm, graph cut(GC)[4], graph cut for multiple cameras(GCMulCam)[9], respectively. The two rows show the result
computed from two and five input images(center, left, right, top, bottom), respectively.

Sawtooth Venus Map Cones Teddy

Fig. 3. Our results on other five data sets. From top to bottom, the four rows show the reference image, initial color
segmentation, disparity map produced by our algorithm and the ground truth, respectively.


